Efficient 3D object recognition using foveated point clouds

نویسندگان

  • Rafael Beserra Gomes
  • Bruno Marques Ferreira da Silva
  • Lourena Karin de Medeiros Rocha
  • Rafael Vidal Aroca
  • Luiz Carlos Pacheco Rodrigues Velho
  • Luiz Marcos Garcia Gonçalves
چکیده

Recent hardware technologies have enabled acquisition of 3D point clouds from real world scenes in real time. A variety of interactive applications with the 3D world can be developed on top of this new technological scenario. However, a main problem that still remains is that most processing techniques for such 3D point clouds are computationally intensive, requiring optimized approaches to handle such images, especially when real time performance is required. As a possible solution, we propose the use of a 3D moving fovea based on a multiresolution technique that processes parts of the acquired scene using multiple levels of resolution. Such approach can be used to identify objects in point clouds with efficient timing.Experiments show that the use of the moving fovea shows a seven fold performance gain in processing time while keeping 91.6% of true recognition rate in comparison with state-of-the-art 3D object recognition methods.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

3D Detection of Power-Transmission Lines in Point Clouds Using Random Forest Method

Inspection of power transmission lines using classic experts based methods suffers from disadvantages such as highel level of time and money consumption. Advent of UAVs and their application in aerial data gathering help to decrease the time and cost promenantly. The purpose of this research is to present an efficient automated method for inspection of power transmission lines based on point c...

متن کامل

A novel Local feature descriptor using the Mercator projection for 3D object recognition

Point cloud processing is a rapidly growing research area of computer vision. Introducing of cheap range sensors has made a great interest in the point cloud processing and 3D object recognition. 3D object recognition methods can be divided into two categories: global and local feature-based methods. Global features describe the entire model shape whereas local features encode the neighborhood ...

متن کامل

Point-wise Convolutional Neural Network

Deep learning with 3D data such as reconstructed point clouds and CAD models has received great research interests recently. However, the capability of using point clouds with convolutional neural network has been so far not fully explored. In this paper, we present a convolutional neural network for semantic segmentation and object recognition with 3D point clouds. At the core of our network i...

متن کامل

Audio-Tactile Annotation and Registration of 3D Point Clouds for Robotic Manipulation

The recent advent of low-cost 3D sensing technologies has greatly increased the use of 3D point cloud-based representations in robotics. Such representations have a variety of applications, including object recognition, pose estimation and grasp point selection. A major limitation of 3D point clouds, however, is that they fail to capture an object’s functional features – for example, a 3D model...

متن کامل

Object Recognition in 3D Point Clouds Using Web Data and Domain Adaptation

Over the last years, object detection has become a more and more active field of research in robotics. An important problem in object detection is the need for sufficient labeled training data to learn good classifiers. In this paper we show how to significantly reduce the need for manually labeled training data by leveraging data sets available on the World Wide Web. Specifically, we show how ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Computers & Graphics

دوره 37  شماره 

صفحات  -

تاریخ انتشار 2013